Why is answer not-489
To find the average odds between the American odds of -833 and -146, we can convert these odds into decimal odds, calculate the average, and then convert back to American odds if needed.
Average=1.120+1.68492\text{Average} = \frac{1.120 + 1.6849}{2}Average=21.120+1.6849
Calculating it:
To find the average odds between the American odds of -833 and -146, we can convert these odds into decimal odds, calculate the average, and then convert back to American odds if needed.
Step 1: Convert American Odds to Decimal Odds
- Convert -833:
Decimal Odds=100∣AmericanOdds∣+1=100833+1≈1.120\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{833} + 1 \approx 1.120Decimal Odds=∣AmericanOdds∣100+1=833100+1≈1.120 - Convert -146:
Decimal Odds=100∣AmericanOdds∣+1=100146+1≈1.6849\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{146} + 1 \approx 1.6849Decimal Odds=∣AmericanOdds∣100+1=146100+1≈1.6849
Step 2: List All Decimal Odds
- For -833: 1.120
- For -146: 1.6849
Step 3: Calculate the Average of the Decimal Odds
Now, let's calculate the average of these decimal odds:Average=1.120+1.68492\text{Average} = \frac{1.120 + 1.6849}{2}Average=21.120+1.6849
Calculating it:
- Sum up the odds:
1.120+1.6849=2.80491.120 + 1.6849 = 2.80491.120+1.6849=2.8049 - Divide by 2 (the number of values):
Average Decimal Odds=2.80492≈1.4024\text{Average Decimal Odds} = \frac{2.8049}{2} \approx 1.4024Average Decimal Odds=22.8049≈1.4024
Step 4: Convert Average Decimal Odds Back to American Odds
Now, we convert the average decimal odds back to American odds:- Since 1.4024<2.001.4024 < 2.001.4024<2.00 (it’s a negative American odds situation):
American Odds=−100DecimalOdds−1\text{American Odds} = -\frac{100}{Decimal Odds - 1}American Odds=−DecimalOdds−1100
American Odds=−1001.4024−1≈−1000.4024≈−248.99\text{American Odds} = -\frac{100}{1.4024 - 1} \approx -\frac{100}{0.4024} \approx -248.99American Odds=−1.4024−1100≈−0.4024100≈−248.99