Skip to content

Math guys this seems wrong

jjgold

jjgold

Joined
Oct 15, 2021
Messages
40,088
Why is answer not-489

To find the average odds between the American odds of -833 and -146, we can convert these odds into decimal odds, calculate the average, and then convert back to American odds if needed.

Step 1: Convert American Odds to Decimal Odds​

  1. Convert -833:
    Decimal Odds=100∣AmericanOdds∣+1=100833+1≈1.120\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{833} + 1 \approx 1.120Decimal Odds=∣AmericanOdds∣100+1=833100+1≈1.120
  2. Convert -146:
    Decimal Odds=100∣AmericanOdds∣+1=100146+1≈1.6849\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{146} + 1 \approx 1.6849Decimal Odds=∣AmericanOdds∣100+1=146100+1≈1.6849

Step 2: List All Decimal Odds​

  • For -833: 1.120
  • For -146: 1.6849

Step 3: Calculate the Average of the Decimal Odds​

Now, let's calculate the average of these decimal odds:
Average=1.120+1.68492\text{Average} = \frac{1.120 + 1.6849}{2}Average=21.120+1.6849

Calculating it:

  1. Sum up the odds:
    1.120+1.6849=2.80491.120 + 1.6849 = 2.80491.120+1.6849=2.8049
  2. Divide by 2 (the number of values):
    Average Decimal Odds=2.80492≈1.4024\text{Average Decimal Odds} = \frac{2.8049}{2} \approx 1.4024Average Decimal Odds=22.8049≈1.4024

Step 4: Convert Average Decimal Odds Back to American Odds​

Now, we convert the average decimal odds back to American odds:

  • Since 1.4024<2.001.4024 < 2.001.4024<2.00 (it’s a negative American odds situation):
    American Odds=−100DecimalOdds−1\text{American Odds} = -\frac{100}{Decimal Odds - 1}American Odds=−DecimalOdds−1100
    American Odds=−1001.4024−1≈−1000.4024≈−248.99\text{American Odds} = -\frac{100}{1.4024 - 1} \approx -\frac{100}{0.4024} \approx -248.99American Odds=−1.4024−1100≈−0.4024100≈−248.99

Conclusion​

The average odds between -833 and -146 is approximately -249 when rounded to the nearest whole number.
 

phillyflyers

phillyflyers

Joined
Aug 8, 2024
Messages
8,337
Why is answer not-489

To find the average odds between the American odds of -833 and -146, we can convert these odds into decimal odds, calculate the average, and then convert back to American odds if needed.

Step 1: Convert American Odds to Decimal Odds​

  1. Convert -833:
    Decimal Odds=100∣AmericanOdds∣+1=100833+1≈1.120\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{833} + 1 \approx 1.120Decimal Odds=∣AmericanOdds∣100+1=833100+1≈1.120
  2. Convert -146:
    Decimal Odds=100∣AmericanOdds∣+1=100146+1≈1.6849\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{146} + 1 \approx 1.6849Decimal Odds=∣AmericanOdds∣100+1=146100+1≈1.6849

Step 2: List All Decimal Odds​

  • For -833: 1.120
  • For -146: 1.6849

Step 3: Calculate the Average of the Decimal Odds​

Now, let's calculate the average of these decimal odds:
Average=1.120+1.68492\text{Average} = \frac{1.120 + 1.6849}{2}Average=21.120+1.6849

Calculating it:

  1. Sum up the odds:
    1.120+1.6849=2.80491.120 + 1.6849 = 2.80491.120+1.6849=2.8049
  2. Divide by 2 (the number of values):
    Average Decimal Odds=2.80492≈1.4024\text{Average Decimal Odds} = \frac{2.8049}{2} \approx 1.4024Average Decimal Odds=22.8049≈1.4024

Step 4: Convert Average Decimal Odds Back to American Odds​

Now, we convert the average decimal odds back to American odds:

  • Since 1.4024<2.001.4024 < 2.001.4024<2.00 (it’s a negative American odds situation):
    American Odds=−100DecimalOdds−1\text{American Odds} = -\frac{100}{Decimal Odds - 1}American Odds=−DecimalOdds−1100
    American Odds=−1001.4024−1≈−1000.4024≈−248.99\text{American Odds} = -\frac{100}{1.4024 - 1} \approx -\frac{100}{0.4024} \approx -248.99American Odds=−1.4024−1100≈−0.4024100≈−248.99

Conclusion​

The average odds between -833 and -146 is approximately -249 when rounded to the nearest whole number.
Coach, the formatting is flawed, but your conclusion is correct.

-249 is the answer when rounded to the nearest whole number.
 

KVB

KVB

Joined
Apr 11, 2023
Messages
16,977
Why is answer not-489

To find the average odds between the American odds of -833 and -146, we can convert these odds into decimal odds, calculate the average, and then convert back to American odds if needed.

Step 1: Convert American Odds to Decimal Odds​

  1. Convert -833:
    Decimal Odds=100∣AmericanOdds∣+1=100833+1≈1.120\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{833} + 1 \approx 1.120Decimal Odds=∣AmericanOdds∣100+1=833100+1≈1.120
  2. Convert -146:
    Decimal Odds=100∣AmericanOdds∣+1=100146+1≈1.6849\text{Decimal Odds} = \frac{100}{|American Odds|} + 1 = \frac{100}{146} + 1 \approx 1.6849Decimal Odds=∣AmericanOdds∣100+1=146100+1≈1.6849

Step 2: List All Decimal Odds​

  • For -833: 1.120
  • For -146: 1.6849

Step 3: Calculate the Average of the Decimal Odds​

Now, let's calculate the average of these decimal odds:
Average=1.120+1.68492\text{Average} = \frac{1.120 + 1.6849}{2}Average=21.120+1.6849

Calculating it:

  1. Sum up the odds:
    1.120+1.6849=2.80491.120 + 1.6849 = 2.80491.120+1.6849=2.8049
  2. Divide by 2 (the number of values):
    Average Decimal Odds=2.80492≈1.4024\text{Average Decimal Odds} = \frac{2.8049}{2} \approx 1.4024Average Decimal Odds=22.8049≈1.4024

Step 4: Convert Average Decimal Odds Back to American Odds​

Now, we convert the average decimal odds back to American odds:

  • Since 1.4024<2.001.4024 < 2.001.4024<2.00 (it’s a negative American odds situation):
    American Odds=−100DecimalOdds−1\text{American Odds} = -\frac{100}{Decimal Odds - 1}American Odds=−DecimalOdds−1100
    American Odds=−1001.4024−1≈−1000.4024≈−248.99\text{American Odds} = -\frac{100}{1.4024 - 1} \approx -\frac{100}{0.4024} \approx -248.99American Odds=−1.4024−1100≈−0.4024100≈−248.99

Conclusion​

The average odds between -833 and -146 is approximately -249 when rounded to the nearest whole number.

Gold, get rid of the copy and paste and put it in your own words.

When I see you can do that, I'll help you.
 
  • Haha
Reactions: JDS

KVB

KVB

Joined
Apr 11, 2023
Messages
16,977
What I’m trying to do for each sport probably based off thousands of bets and ML odds what my average odds are for let’s say tennis

I get two different figures as I posted in the first one

lmao

Good strategy Gold, play with averages.

Why not play with the actual odds?

Averages only matter if you don't care about the number.
 
Top